Satellite Tagging Records of Deep Divers off Cape Hatteras, North Carolina

Project Summary

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

Themes and Categories

Graduate Students: Jillian Wisse, University Program in Ecology; Vivienne Foroughirad, Marine Science & Conservation

Faculty: Dr. Andrew Read

Course: Biology of Marine Animals, Biology 376A, ENVIRON 376A & Environ 776A 

This dataset includes 30 satellite-linked tags deployed by Duke Marine Lab researchers between 2014 and 2017 as part of the US Navy Marine Species Monitoring Program. Students used these data to explore comparative diving behavior between two deep-diving species off the North Carolina coast, short-finned pilot whales (Globicephala macrorhynchus) and Cuvier’s beaked whale (Ziphius cavirostris). Beaked whales are the deepest divers of all mammals, with recorded dives of almost 3000 meters, and are especially enigmatic, spending up to 95% of their time below the ocean surface. 

Exercises

  • Pre-process satellite tag data to remove corrupted records and identify gaps.
  • Plot dive profiles for individual pilot whales and beaked whales.
  • Calculate summary statistics for dive depths and durations.
  • Compare plots of dive distributions for each species. 

Techniques

  • R & RStudio – Import data from excel and csv files
  • Parse data and properly format data types
  • Visualize dive data in dive profile plots
  • Calculate summary statistics
  • Plot line graphs and scatterplots 

Downloads

An Introduction to Data Analysis with R (PDF)

Project slides (PDF)

Simulated code

Simulated data set

Related Projects

United Nations Sustainable Development Goal 7 calls for universal access to affordable, reliable, sustainable, and modern energy. Researchers and practitioners around the world have responded to this call by producing a wealth of energy access data. While many data gaps still exist, are we capturing the fullest potential from the information and research we do have, and what it tells us about how to accelerate energy access? Power for All’s Platform for Energy Access Knowledge (PEAK) is an interactive knowledge platform designed to automatically curate, organize, and streamline large, growing bodies of data into digestible, sharable, and useable knowledge through automated data capture, indexing, and visualization. A team of students led by Rebekah Shirley will consult with Power for All to creatively visualize PEAK’s library, and to explore machine learning and natural language processing tools that can enable auto-extraction and visualization of data for more effective science communication.

The aim of this data expedition was to give students an introduction to stable isotopes and how the data can be used to understand trophic dynamics. 

A team of students led by researchers in the Energy Data Analytics Lab and the Sustainable Energy Transitions Initiative will develop machine learning techniques for automatically mapping global electricity infrastructure using satellite imagery. By identifying substations, transmission lines, and distribution lines, students will create and publish a training dataset that we will use to automate grid infrastructure geolocation. These data and techniques will empower researchers and policymakers to better understand who has grid-connected access to electricity, who is underserved, and how to most efficiently transition communities and countries towards sustainable electrification.