Gerrymandering

Project Summary

Sophie Guo, Math/PoliSci major, Bridget Dou, ECE/CompSci major, Sachet Bangia, Econ/CompSci major, and Christy Vaughn spent ten weeks studying different procedures for drawing congressional boundaries, and quantifying the effects of these procedures on the fairness of actual election results.

Themes and Categories
Year
2015
Contact
Jonathan Mattingly
mathematics
jonm@math.duke.edu

Project Results

There has already been research done with North Carolina districts, described in http://today.duke.edu/2014/10/mathofredistricting. There, Jonathan Mattingly and Christy Vaughn showed that randomly re-drawing district boundaries would have dramatically changed election results. This summer's team extended the analysis to many more states, and found that states with independent election commissions (like Iowa) had statistically fairer results than states with very partisan districting systems (like Maryland).

L-R: Christy Vaughn; Sachet Bangia; Sophie Guo; Bridget Dou. Hard at work in SSRI.

Download the executive summary (PDF).

See Quantifying Gerrymandering, a website developed by Sachet Bangia, for more details about the project.

Gerrymandering work now posted on Arvix: https://arxiv.org/abs/1704.03360

Disciplines Involved

  • Political Science
  • Mathematics

Project Team

Undergraduates: Sophie Guo, Bridget Dou, and Sachet Bangia

Faculty Lead: Jonathan Mattingly, Professor, Mathematics

Graduate student mentor: Christy Vaughn, Program in Applied and Computational Mathematics, Princeton

Additional information

Relatively Prime podcast on the project:

Related People

Related Projects

Brooke Erikson (Economics/Computer Science), Alejandro Ortega (Math), and Jade Wu (Computer Science) spent ten weeks developing open-source tools for automatic document categorization, PDF table extraction, and data identification. Their motivating application was provided by Power for All’s Platform for Energy Access Knowledge, and they frequently collaborated with professionals from that organization.

Click here to read the Executive Summary

 

Jake Epstein (Statistics/Economics), Emre Kiziltug (Economics), and Alexander Rubin (Math/Computer Science) spent ten weeks investigating the existence of relative value opportunities in global corporate bond markets. They worked closely with a dataset provided by a leading asset management firm.

Click here for the Executive Summary

Maksym Kosachevskyy (Economics) and Jaehyun Yoo (Statistics/Economics) spent ten weeks understanding temporal patterns in the used construction machinery market and investigating the relationship between these patterns and macroeconomic trends.

They worked closely with a large dataset provided by MachineryTrader.com, and discussed their findings with analytics professionals from a leading asset management firm.

Click here to read the Executive Summary