Classification of Vascular Anomalies using Continuous Doppler Ultrasound and Machine Learning

Project Summary

Over ten weeks, BME and ECE majors Serge Assaad and Mark Chen joined forces with Mechanical Engineering Masters student Guangshen Ma to automate the diagnosis of vascular anomalies from Doppler Ultrasound data, with goals of improving diagnostic accuracy and reducing physician time spent on simple diagnoses. They worked closely with Duke Surgeon Dr. Leila Mureebe and Civil and Environmental Engineering Professor Wilkins Aquino.

Themes and Categories
Contact
Ashlee Valente
Duke Center for Applied Genomics & Precision Medicine
ashlee.valente@duke.edu

Project Results: Working with a Duke Hospital dataset of 5 Doppler ultrasound recordings taken from each of 38 patients, the team used machine-learning to predict whether or not a patient was healthy from the recordings. They extracted features from the recordings using a variety of tools from signal processing, visualized the separation of healthy and unhealthy patients in this feature space, and built a competitive classifier using standard supervised-learning tools. They had the opportunity to present their findings to Duke's Provost and to senior leadership within Duke Hospital and the Duke Clinical Research Institute.

Faculty Leads: Wilkins AquinoLeila Mureebe

Project Manager: Kyle Burris

Click here for the Executive Summary

"Participating in Data+ definitely changed my perception of Data Science research. It was more interdisciplinary than I expected, and the opportunity to work with experts across different fields (Medicine, Civil Engineering, Statistics) was a defining aspect of my Data+ experience." - Serge Assad, Biomedical Engineering, Electrical & Computer Engineering

"The project mentor was fantastic. The three students I worked with were superb. We were able to make great progress that will lead to journal publications and grant proposals." — Wilkins Aquino, Professor in the Department of Civil and Environmental Engineering. Pratt School of Engineering

Related People

Related Projects

United Nations Sustainable Development Goal 7 calls for universal access to affordable, reliable, sustainable, and modern energy. Researchers and practitioners around the world have responded to this call by producing a wealth of energy access data. While many data gaps still exist, are we capturing the fullest potential from the information and research we do have, and what it tells us about how to accelerate energy access? Power for All’s Platform for Energy Access Knowledge (PEAK) is an interactive knowledge platform designed to automatically curate, organize, and streamline large, growing bodies of data into digestible, sharable, and useable knowledge through automated data capture, indexing, and visualization. A team of students led by Rebekah Shirley will consult with Power for All to creatively visualize PEAK’s library, and to explore machine learning and natural language processing tools that can enable auto-extraction and visualization of data for more effective science communication.

Are there relative value opportunities in the global corporate bond markets?  
A team of students will work with Professor Emma Rasiel to understand whether an analysis of credit spreads on bonds issued by international firms in multiple countries over time can shed light on potential arbitrage opportunities. The team will have frequent opportunities to interact with analytics professionals at a leading financial advisory and asset management firm.

 

A team of students will consult with a leading financial advisory and asset management firm that is seeking to understand how big data can shed light on the secondary market for construction machinery. Students will explore a combination of publicly-available datasets that describe the used-machinery market and its potential implications as an indicator for the business cycle. There will be frequent interactions with analytical professionals from the firm.