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Because politicians often repeat previously fact-checked claims, our goal is to automate fact-checking
and increase exposure for fact-checking efforts by matching sentences from live feeds against a

compilation of existing fact-checks.

We divide our problem into two subproblem:s:

« Given an audio source, identify and extract check-worthy
factual sentences.

« Given a check-worthy factual sentence, find relevant fact-
checks in a database.

We define a fact-check as relevant to a spoken claim if the fact-

check either entails or contradicts the spoken claim. In NLP,

sentence X entails sentence Y if a human assuming X to be true

would infer that Y is also true. Sentence X contradicts sentence Y if

a human assuming X to be true would infer that Y cannot be true.

The problem of identifying entailments and contradictions is

known as natural language inference (NLI).

Premise

Fiction

The Old One always comforted Ca'daan, except
today.

Telephone Speech

yes now you know if if everybody like in August
when everybody's on vacation or something we can
dress a little more casual or

9/11 Report

At the other end of Pennsylvania Avenue, people
began to line up for a White House tour.

Label

neutral

contradiction

entailment

Hypothesis

Ca'daan knew
the Old One
very well.

Augustisa
black out
month for
vacations in
the company.

People formed
aline at the
end of
Pennsylvania
Avenue.



Data Pipeline, with State of the Union as example
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Matching Model ]
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