Solar Power Estimation

Project Summary

Sharrin ManorArjun DevarajanWuming Zhang, and Jeffrey Perkins explored a lage collection of imagery data provided by the U.S. Geological Survey, with the goal of identifying solar panels using image recognition. They worked closely with the Energy Data Analytics Lab, part of the Energy Initiative at Duke.

Themes and Categories

Project Results

The students coded their own proof-of-principle algorithm which identified solar panels in a small test set with over ninety percent accuracy. They also painstakingly created a ground-truthed dataset that will help train future machine-learning algorithms.

Download the executive summary (PDF).

Video: The students and their mentor talk about the project.

Disciplines Involved

  • Environmental Science
  • Energy Systems
  • Machine Learning
  • Electrical Engineering

Project Team

Undergraduates: Sharrin Manor, Wuming Zhang, Jeffrey Perkins, Arjun Devarajan

Faculty Sponsors:

 

Project Mentor: Kyle Bradbury, Managing Director, Energy Data Analytics Lab

Graduate Mentors:

Related People

Related Projects

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

The aim of our data expeditions course was to give students in Bio 190S-0.2, a summer session course in sensory systems, an introduction to how real data may actually look and how they may actually be analyzed. Over the course of a two-hour class session, 16 students ranging from 16-22 years old were given the opportunity to explore a dataset on the color vision capabilities of three species of cleaner shrimp.

Devri Adams (Environmental Science), Annie Lott (Statistics), and Camila Vargas Restrepo (Visual Media Studies, Psychology) spent ten weeks creating interactive and exploratory visualizations of ecological data. They worked with over sixty years of data collected at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire.