Mapping the Ocean Floor

Project Summary

William Willis (Mechanical Engineering, Physics) and Qitong Gao (Masters Mechanical Engineering) spent ten weeks with the goal of mapping the ocean floor autonomously with high resolution and high efficiency. Their efforts were part of a team taking part in the Shell Ocean Discovery XPRIZE, and they made extensive use of simulation software built from Bellhop, an open-source program distributed by HLS Research.

Themes and Categories
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Project Results: The team adapted Synthetic Aperture Sonar (SAS) methodology to produce high-resolution images. They also built a Convolutional Neural Network that classified, with high accuracy, different features on the ocean floor.

Partially funded by the Duke Marine Lab

Click here for the Executive Summary

Faculty Leads:

Martin Brooke

Douglas Nowacek

Tyler Bletsch

Project Manager: Vaishakhi Mayya

 

  • "We made a lot of progress that would not have happened otherwise." — Martin Brooke, Associate Professor of Electrical and Computer Engineering, Pratt School of Engineering

  •  

Related People

Related Projects

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

The aim of this Data Expedition was for students to learn hands-on data visualization techniques using a variety of data types. Students first discussed how data visualization is useful, and tips to make graphs both visually appealing and easy to understand. 

The aim of our data expeditions course was to give students in Bio 190S-0.2, a summer session course in sensory systems, an introduction to how real data may actually look and how they may actually be analyzed. Over the course of a two-hour class session, 16 students ranging from 16-22 years old were given the opportunity to explore a dataset on the color vision capabilities of three species of cleaner shrimp.