Classification of Vascular Anomalies using Continuous Doppler Ultrasound and Machine Learning

Project Summary

Over ten weeks, BME and ECE majors Serge Assaad and Mark Chen joined forces with Mechanical Engineering Masters student Guangshen Ma to automate the diagnosis of vascular anomalies from Doppler Ultrasound data, with goals of improving diagnostic accuracy and reducing physician time spent on simple diagnoses. They worked closely with Duke Surgeon Dr. Leila Mureebe and Civil and Environmental Engineering Professor Wilkins Aquino.

Themes and Categories
Contact
Ashlee Valente
Duke Center for Applied Genomics & Precision Medicine
ashlee.valente@duke.edu

Project Results: Working with a Duke Hospital dataset of 5 Doppler ultrasound recordings taken from each of 38 patients, the team used machine-learning to predict whether or not a patient was healthy from the recordings. They extracted features from the recordings using a variety of tools from signal processing, visualized the separation of healthy and unhealthy patients in this feature space, and built a competitive classifier using standard supervised-learning tools. They had the opportunity to present their findings to Duke's Provost and to senior leadership within Duke Hospital and the Duke Clinical Research Institute.

Faculty Leads: Wilkins AquinoLeila Mureebe

Project Manager: Kyle Burris

Click here for the Executive Summary

"Participating in Data+ definitely changed my perception of Data Science research. It was more interdisciplinary than I expected, and the opportunity to work with experts across different fields (Medicine, Civil Engineering, Statistics) was a defining aspect of my Data+ experience." - Serge Assad, Biomedical Engineering, Electrical & Computer Engineering

"The project mentor was fantastic. The three students I worked with were superb. We were able to make great progress that will lead to journal publications and grant proposals." — Wilkins Aquino, Professor in the Department of Civil and Environmental Engineering. Pratt School of Engineering

Related People

Related Projects

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

The aim of this Data Expedition was for students to learn hands-on data visualization techniques using a variety of data types. Students first discussed how data visualization is useful, and tips to make graphs both visually appealing and easy to understand. 

The aim of our data expeditions course was to give students in Bio 190S-0.2, a summer session course in sensory systems, an introduction to how real data may actually look and how they may actually be analyzed. Over the course of a two-hour class session, 16 students ranging from 16-22 years old were given the opportunity to explore a dataset on the color vision capabilities of three species of cleaner shrimp.